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The effect of a containing cylindrical boundary on the 
velocity of a large gas bubble in a liquid 

By R. COLLINS 
Department of Mechanical Engineering, University College London 

(Received 31 July 1966) 

The velocity of a large gas bubble rising along the axis of a cylindrical container 
filled with liquid, is derived to a fist approximation from a simple flow model 
of the system. The resulting expressions involve ratios of certain infinite series, 
which are evaluated for a few cases, and the theory is then seen to agree with pre- 
viously accepted results a t  its asymptotes. Experiments are performed which 
confirm the first approximation and which allow the theory to be recast as 
a semi-empirical theory relating bubble volume with velocity. In  this form it 
agrees with the results of Uno & Kintner (1956), but indicates that the relation 
between volume and curvature which they employed was in error. 

1. Introduction 
An introduction to previous work on large gas bubbles in liquids begins in- 

evitably by referring to the papers by Davies & Taylor (1950) and Dumitrescu 
(1943). Davies & Taylor studied an infinite liquid in which the bubble assumes 
the characteristic spherical-cap form shown in figure 1 (plate 1). The rim of this 
cap subtends an angle of approximately 100" at the apparent centre of curva- 
ture, while the base of the bubble is unsteady and fluctuates about a plane 
through the rim. Their resulting theoretical expression for bubble velocity was 

where g is the gravitational acceleration and ii the apparent (or mean) radius of 
curvature of the bubble cap. At the other extreme, Dumitrescu's analysis applied 
to the infinitely long bubble in a cylindrical tube of circular cross-section, the type 
of bubble eventually produced when a vertical liquid-filled column is suddenly 
opened at its lower end. For this problem his analysis gave 

Us = 0*496(gb)&, ( 2 )  

where b is the radius of the tube. There is ample evidence to support the forms 
exhibited by equations (1)  and ( 2 ) ,  although experimental values for the numeri- 
cal constants differ slightly. For example, the mean value of U,/(gi i ) i  from the 
experiments of Davies &, Taylor was 0.655, while Rosenberg's (1950) experiments 
on the same problem indicated a value of 0-645. In examining this slight differ- 
ence, Collins (1966, subsequently termed I) has shown that one must regard 
equation (1) as a good f i s t  approximation, so good in fact that it is within 2 % 
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of a second approximation which was determined using a perturbation technique 
to be 

and which is in excellent agreement with the experimental evidence. As a result, 
the first approximation is expected to give a good description of bubble velocity 
in more complicated geometries where a second approximation would be very 
involved. In  essence the first approximation satisfies the requirement that the 
gas pressure within the bubble should be constant, only to the first order in the 
neighbourhood of the front stagnation point. The present analysis constitutes a 
first approximation. 

Dumitrescu’s experiments showed that when the cylinders were sufficiently 
large so that surface tension and viscous forces were insignificant, as all theories 
considered here require, then U,/(gb)* = 0.49. Experiments for the same problem 
were also performed by Davies & Taylor who found that, for their largest tube, 
U,/(gb)J ranged from 0.466 to 0.49. Their objective was to examine their own 
theoretical result for this problem which was 

U, = 0*652(gZ)J, (3) 

U, = 0-464(gb)*, (4) 

and which they themselves regarded as a very rough estimate. Nicklin, Wilkes 
& Davidson ( 1962) have confirmed Dumitrescu’s experimental results and 
have found that ( 2 )  also describes the velocities of bubbles of finite lengths in 
tubes, which are called slugs, provided their lengths exceed about one tube 
diameter.? Stewart (1965) examined all available experimental evidence on slug 
velocities and concluded that Dumitrescu’s result was confirmed. He also per- 
formed a relaxation analysis to  determine the shape of the slug at its nose 
assuming its velocity to be given by (2). 

Another theoretical result for Dumitrescu’s problem is due to Layzer (1955) 
who found 

= (gb/k,)B = 0*511(gb)*, 

where Ic, = 3.8317 ..., which is the first positive zero of the Bessel function J1. 
The three solutions for the slug limit given here, differ in the manner in which the 
condition of constant gas pressure is satisfied. Layzer’s result was obtained in the 
spirit of what would now be called the first approximation so that his result would 
be expected as an asymptote at the slug limit in the present analysis. We shall, 
nevertheless, find it possible to use Dumitrescu’s arguments to truncate the 
solution obtained here so that i t  agrees closely with his own result in ( Z ) ,  and 
thus agrees with the available experimental evidence a t  the slug limit. 

( 5 )  

2. Theory 
In I, it was shown that the velocity of a large gas bubble in a liquid, is related 

to the radius of curvature at its front stagnation point, a, through the expression 

u = (ga)+/{dh/dB},,,, 

t Davies & Taylor’s experiments were performed by emptying long liquid-filled tubes by 
the sudden opening of their lower ends, while Dumitresou injected very long slugs into his 
tubes. 
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where the angular co-ordinate 8 is measured from an origin moving with the 
bubble and at the centre of curvature of the bubble at  the front stagnation point, 
and where the irrotational velocity distribution on a model of the bubble surface 
is given in magnitude by 

q = Uh(B). (7)  

It is convenient in the present axisymmetric problem to work with a system 
of cylindrical polar co-ordinates w, x moving with the bubble and having their 
origin at the front stagnation point with x directed vertically upwards. In  this 
co-ordinate system (dh/de),,, may be evaluated using the relation 

where v is the local velocity on the bubble surface in the direction of w. 

W - 

I 
I 

b b I 
I 

(a)  

Bubble cap 

Wake region 

FIGURE 2. The flow system and its model. 

In a previous paper (Collins 1965,II) it  has been shown that a first approxima- 
tion for the velocity of a large plane gas bubble moving along the axis of a vertical 
channel can be derived from the complex potential for a two-dimensional doublet 
within the channel. In this paper the corresponding axispmmetric irrotational 
flow will be used to construct the equivalent three-dimensional solution. The real 
bubble and its model are represented in figure 2 .  The radius of curvature of the 
bubble and its model at the forward stagnation point is denoted by a,  the radius 
of the cylinder by b, and the length of the body forming the model and defined by 
the closed streamline is 2c. This closed streamline is taken to represent the bubble 
shape in the region of the forward stagnation point and also models the wake 
behind the bubble to a certain extent. 

7-2 
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An expression for Stokes's stream function for the flow of a uniform stream 
past a doublet on the axis of a cylindrical channel, which is valid for x > - c, may 
be deduced from a paper by Lamb (1926). If written in the modified form 

S {wJl(kn W / b )  ~ X P  [ - kn(x + c)/bI}/ J 8 k n )  

X {En ~ X P  [ - knc/bI}/Jg(kn) 
(9) 

$ =  u [ - - b c  W2 

2 
n 

then the doublet is situated at the point x = - c ,  and the doublet strength is 
adjusted by the function 

C {knexp [- knc/bI}/J8kn)  
n 

so that the forward stagnation point is always at the origin of co-ordinates for all 
values of c/b. In  equation (9), J1 and J, are the familiar Bessel functions, and the 
summations are taken over all positive values of En for which J,(k,) = 0. The 
equation of the closed streamline $ = 0 from (9) is 

In  evaluating its radius of curvature at the origin it is convenient first to 
expand the function {Jl(knw/b)}/w as a power series. On taking the second 
derivative, the radius of curvature is found as 

It will prove to be convenient to have a shorthand notation for the type of 
function appearing on the right-hand side of (11). The role of these functions 
is to transfer control of velocity and shape from the parameter c to the cylinder 
dimension b. They are accordingly denoted by the functional symbol Ta,p defined 
so that 

C {kzexp [- knc/bI}/J3kn)  

n 

in which the summations are, as before, taken over the positive zeros of J1. 
(1 1)  thus appears as 

a/c = 4(b/c) T,,,(c/b). (13) 

One of the asymptotes of this equation is readily found without computation, 
for from (12), as c/b -+ co, T,,!(c/b) -f (k$-p,  where k, = 3.8317 .. ., is the first zero 
of J,. From (13) therefore, a /b+4 /k1  = 1.044 as c/b+co, whereas in I1 the 
limiting value for the plane case was a /b  -+ 3/n = 0.955. 

To evaluate the other limit of equation (1 3) as c/b -+ 0 one would strictly need 
a series expansion for T&(c/b) valid for small c/b. Arigorous mathematical evalua- 
tion of this series, however, is unnecessary since for our purpose the asymptotic 
behaviour can be inferred using physical arguments. We expect a/c-+l as 
c/b -+ 0 because the flow field is then infinite in extent and the closed streamline is 



Velocity of a large gas bubble in a liquid 101 

then spherical and of radius a. This implies that T2,Jc/b) N c/4b, which is con- 
firmed by numerical evaluation performed on an electronic computer. Forty 
terms in the series were usually sufficient for this computation except for 
clb < 0.2 where convergence is very slow. The resulting form for a/c,  drawn in 
figure 3, has the same character as in the plane case. The radius of curvature a, is 
sensibly constant and equal to  c for values of c/b < 0.5; when elb > 2-5, 
a/b = 4/k, = 1.044. Some numerical values for a/c its a function of c/b are given 
in table 1. 

0-8 

0-2 
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0.01 0.1 1 10 I no 

C l b  

FIGURE 3. The radius of curvature of the model at its front stagnation point. 
-, equation (11); ---, a/c = 1*044b/c. 

c/b 0.1 0.2 0-3 0.45 0.6 0.8 
a/c 1.000 1.000 0.999 0-993 0.977 0.931 
c /b  1.0 1-5 2.0 4.0 6.0 10.0 
a/c 0.863 0.668 0.518 0.261 0.174 0.104 

For c/b > 2.5, a/c = 1+044b/c. 

TABLE 1. Values of a/c as a function of c/b from equation ( 11) 

By expanding the functions exp ( - k,x/b) and J,(k, a / b )  in equation (9) as 
power series and differentiating to find the velocity on the a-axis in the vicinity 
of the origin, it  may be shown that 

2(dh/df%=Ci = ( U P )  Tz,,(clb), (14) 

u = 2(gaP (b/a)  T,,,(c/b), (15)  

or alternatively U = 2(gb)* (b/a)* T,,,(c/b). (16) 

from which it follows on using (6) that bubble velocity is 
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From (16)  using (13)  it  is found that, as c/b+co, U+ Us = (gb/k,)t ,  agreeing 
with Layzer’s result in equation (5) .  Again using physical arguments, since the 
closed streamline is spherical when c/b -+ 0, then a = Z and, as Davies & Taylor 
derived their result from consideration of this flow, one expects U -+ U, = $ (gZ)* 
as c/b-+O. This implies T,,,(c/b) - c/3b, which is again confirmed by numerical 
evaluation.? Equations (15) and (16)  are shown as functions of a/b in figure 4 
through the use of (13) .  The functions again have the same character as in 
the plane case. Comparison of figures 3 and 4 with their plane counterparts 
in I1 does show however, that the presence of the containing cylinder does 
not influence the velocity and shape of the bubble model as strongly as does the 
wall in the plane case. Table 2 gives a few values of UlU, and U/(gb)t ,  for various 
values of alb. 
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FIGURE 4. Variation of bubble velocity with alb: -, present theory; 
0, Dumitrescu’s theory; ---, wall correction for solid spheres in Stokes flow. 

It is interesting also to compare the boundary effect a t  the other extreme of 
Reynolds number. Very small bubbles in liquids are known to behave like solid 
bodies in the terminal velocities which they adopt, so that the cylindrical 
boundary affects their velocities in the same way as it would affect a solid sphere. 
Solutions for this problem have been fully discussed by Happel & Brenner (1965) 
and values for U/Um taken from their tables are also plotted in figure 4; in this 
context, of course, Urn is the terminal velocity of the bubble in an infinite liquid, 
assuming Stokes flow. The behaviour of the two solutions is radically different. 
For example, at ajb = 0.1, the effect of the boundary on a large gas bubble is 
negligible, while the very small bubble has its velocity reduced by more than 20 %. 

The broken vertical lines in figure 4 are drawn at a/b  = 0.75. It will be shown 
in 5 3.2 that there are plausible theoretical arguments, which were also employed 

7 Since T,,,(c/b) T,, ,(c/b) = TI,  ,(c/b) it is concluded that TI, ,(c/b) N c2/12b2. A guess at the 
asymptotic behaviour in the general case on this rather meagre evidence is 



Velocity of a large gas bubble in a liquid 103 

by Dumitrescu, for truncating the present solution at that value. That is, one 
would not expect values of a/b exceeding 0.75 to be realised physically, so that 
the present solution above that value is discarded. Empirically an upper limit is 
found at a/b = 0.71 . 

alb 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0-7 

U P ,  
0.999 
0.994 
0-982 
0.962 
0.935 
0.903 
0.869 

Ul(9b)fr 
0.211 
0.296 
0.359 
0.405 
0.441 
0.466 
0.485 

a16 UIUm U/(9b)* 
0.7 1 0.865 0.486 
0.75 0.851 0.492 
0.8 0.833 0.497 
0.9 0.798 0.505 
1.0 0.764 0.510 
1.044 0.750 0-511 

TABLE 2. Values of UIU, and U/(gb)* as functions of a/b from equations (15) and (16) 

(1) Replacement of a by Z 
3. Modifications 

In deriving the first approximation for the infinite liquid limit, Davies & Taylor 
assumed that the flow over the bubble cap could be modelled by the irrotational 
flow over the forward part of a sphere having the same apparent curvature as the 
bubble. That is, they assumed that the radius of curvature of the bubble cap was 
constant so that a = Z. Because the present flow model reduces to theirs in the 
infinite fluid limit it was possible to make the same replacement at that limit in Q 2. 
It is now necessary to justify the replacement of a by Z over the whole range of 
alb, for what is always measured in experiment is Z and not a. In  order to do this 
it must be shown that the differences between these quantities is small during 
transfer of control from c to  b. This would be a difficult task in the axisymmetric 
case because the closed streamline given by equation (10) can be drawn only after 
lengthy iteration on to every point. Instead it will be demonstrated that Z and a 
are very close in the plane case previously discussed in 11, where the boundary is 
more readily drawn. This may be further regarded as belated justification for the 
same replacement implicit in 11. At that time the second approximation, which 
points to the necessity for this justification, had not been obtained. Figure 5 
compares the circle of radius equal to the radius of curvature at the front stagna- 
tion point, S ,  with the true theoretical boundary, for two values of clb. Over 
a subtended angle of 75", which was the angle matched by Davies & Taylor, there 
is no detectable difference for values of c/b up to 2-5. Transfer of control is com- 
plete at that value in the plane case because a /b  has sensibly reached its limiting 
value of 0.955. The replacement of a by Z over the whole range is thus justified 
because the influence of the wall in modifying the forward region of the bubble 
model, is delayed until after the limiting value of a /b  has already been attained. 
There is no reason to expect any radically different behaviour in the axisym- 
metric case, indeed the fact that the effect of the cylinder is in general weaker 
than the effect of the wall may be used to argue that the delay in the axisymmetric 
case would be even longer. 
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(2) Truncation of the solution 

We have seen that the analyses of Layzer and Dumitrescu differ slightly in their 
predictions of U,l(gb)$ for the slug. They differ also in another important respect, 
namely, in the value of alb given for the slug. Layzer’s model has alb = 1.044, 

1 

I s  

FIGURE 5. Comparison of plane bubble shapes with circles having their stagnation point 
curvature. + , elb = 1/n, U / C  = 0-994, a/b = 0.316; a, c/b = 2.5, a/c = 0.382, a/b = 0.955. The 
arc SP subtends an angle of 37.5” at the apparent centre of curvature in each case. 

which is the same as in the present analysisin the limit c/b +a, whileDumitrescu’s 
method gives alb  = 0.75. Nothing can be done to correct Layzer’s own value 
which is an inherent feature of the velocity potential which he assumed for the 
flow; a study of Dumitrescu’s approach, however, indicates a plausible reason for 
truncating the present solution at a/b = 0-75. 

Having formulated the problem in a general manner, arguing on dimensional 
grounds that U,/(gb)* should be a constant, A, Dumitrescu constructed an approxi- 
mate solution to his problem in the following way. He assumed the form of the 
bubble near the origin to be spherical? and of radius a, which allowed him to 
derive a velocity potential for this assumed geometry, and hence to calculate h as 
a function of Z/b .  His method, however, allowed an arbitrary assignment of u l b ,  
so that he was then faced with the task of selecting the correct value. To do this 
he argued that the assumed boundary near the origin must be capable of being 
matched with the asymptotic form at large (negative) x. Since the liquid must 
be faIIing freely in that region, its mean velocity was readily determined in terms 
of its distance below the front stagnation point. A simple application of the 
equation of continuity gave the asymptotic form of the bubble as 

- A2 - X 
b - 2{1- (a/b)2}2’ 

t In Dumitrescu’s solution then, a = si exactly. The origin of the co-ordina.tes was the 
same. 
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which was found to merge imperceptibly with the spherical cap at x = - 0-5 b, 
m = 0.71b if Z/b = 0.75, for which value h = 0.496. Now, if instead of regarding 
the stream function given by equation (9) to be a valid representation of the slug 
flow in the limit c/b -+ oo,t it  is regarded as an approximation to  the flow in the 
neighbourhood of the front stagnation point of a slug of undetermined alb, then 
the limiting value of alb may be determined using Dumitrescu’s matching pro- 
cedure. The only difference is that whereas Dumitrescu assumed the bubble form 
and then derived the flow, we have assumed the flow and calculated the form. 
In  view of what has been said in the previous section about the replacement of 
a by a, the results of these two approaches will be close, so that the present 
solution is also considered to be truncated a t  Z/b = 0.75. At this value, 
U,/(gb)t = 0.492, agreeing very well with equation (2). The truncation is indicated 
in figure 4. 

In  passing it can be mentioned that the same argument applied to the plane 
case discussed in I1 truncates that solution a t  Z/b = 0.72 and adjusts the slug 
velocity to U, = 0-321(gb)+. This is closer to Birkhoff & Carter’s (1956) result than 
to Garabedian’s (1957). 

4. Experiments 
Since Uno & Kintner’s (1956) experimental paper on this topic is already 

widely referred to in the literature, it is necessary to explain why it is not possible 
to use their results to test the theory. First, although their paper has been fre- 
quently used to correct for the effect of the boundary on large gas bubbles, it must 
be used with caution for this purpose, since many of the bubbles used in their 
experiments do not fall into this class but belong to the class of ellipsoidal bubbles 
intermediate between spherical and spherical-cap bubbles. The authors corre- 
lated the ratio 01 U z  with D,/D, where U is the velocity of a bubble of volume V 
in a tube of diameter D, U z  is the velocity this volume of gas would assume in an 
infinite liquid, and D, is the so called ‘equivalent diameter ’, that is the diameter 
of a sphere having the volume 8. As the theory cannot relate velocity with 
volume, it is not possible to use their results in this form for the purposes of com- 
parison. Their paper does contain a figure purporting to correlate U/U*, with 
what is effectively alb. Apart from the fact that the ordinate of this figure still 
requires a knowledge of the relation between volume and velocity, it  is suspect 
on other grounds. Unfortunately the authors did not once measure a, but calcu- 
lated values using their own measurements of volume and a ‘compromise curve ’ 
relating ii and equivalent radius, which was drawn to link up Rosenberg’s data 
for spherical-cap bubbles with his data for ellipsoidal bubbles. As far as can be 
judged, this curve was employed for all the boundaries used in their experiments 
(which had diameters ranging from 2 to 15 cm) so that there was no allowance for 
the effect of the boundary on the shape adopted by a given volume of gas. There 
is the added complication that their figure apparently includes the ellipsoidal 
bubbles generated. 

t This, of course, gives a stream function equivalent to Layzer’s velocity potential. 
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A tank whose horizontal cross-section was a rectangle 16in. x 13in. and two 
of the vertical walls of which were of transparent acrylic sheet &in. thick, was 
filled with water to a depth of 4 ft. In the base of the tank a circular recess 12 in. 
in diameter was turned so as to receive the insert shown in figure 6. Three circular 
grooves turned concentrically in the base board of this assembly served to locate 

Valve 0 
Water ievel 

Base board Locating grooves 
FIGURE 6. The tank insert. 

the cylindrical acrylic inserts which formed the containing boundaries in the 
experiment. The bubbles were generated just above the centre of the board by 
the hemispherical cup technique employed by previous workers including 
Rosenberg and Uno & Kintner. A thin stainless steel hemispherical shell 3in. 
in diameter was supported so that it could be rotated about a horizontal diameter 
in the plane of its rim. Air was introduced and trapped inside this inverted cup 
so that, when rotated, a spherical-cap bubble was produced near to the base of 
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the tank and on the axis of the cylinders. By adjusting the rate of rotation it was 
possible to minimize the production of secondary bubbles but rarely possible to 
eliminate them completely. Each bubble was collected in a graduated cylinder at 
the top of the tank in order to determine its volume. The collection of the 
secondary bubbles at the same time constitutes an unavoidable but slight error 
in the measurement of volume. 

Bubbles were photographed with a 35 mm ‘Robot ’ camera which incorporated 
a motorized film transport mechanism. Two photographs of a bubble were taken 
separated in time by approximately isec, each photograph containing a scale 
and a clock so that bubble velocity could be determined. The initial photograph 
was taken when the bubble had reached the mid-point of its travel from generator 
to collector, a distance of approximately 3 ft. Bubble curvature was measured by 
projecting an enlarged image of the bubble on to a screen and comparing with a 
standard set of circular arcs which were matched to the bubble over an included 
angle of 75”. 

Three acrylic cylinders having internal diameters 3.6 in., 7.6 in. and 11.6 in., 
formed the cylindrical boundaries and a range of bubbles was blown in each. 
Measurements were taken from sixty-one bubbles in all. Detailed experimental 
results from the present and from previous investigations have been recorded 
separately (Collins 1967). 

5. Discussion 
The experimental results are compared with the theory in figure 7, which also 

includes the results of Dumitrescu, Rosenberg and those of Davies & Taylor 
relating to bubbles in nitrobenzene. Davies & Taylor’s experiments were per- 
formed in a tank whose horizontal cross section was a square of side 2 ft. In  order 
to plot the results, an equivalent dimension b for this system was taken as the 
radius of a circle having an area aft2, that is b = 1.13 ft. Rosenberg’s tank was 
large, but of unusual cross-section 4.5 ft. x 25 ft., the experiments being per- 
formed at one end. An equivalent b = 2.54 ft. for his experiments was calculated 
in a similar manner assuming the tank to be effectively square of side 4.5ft. 
Although these equivalent dimensions appear crude, in neither case are they 
critical, since the tanks were sufficiently large to preclude wall effect anyway. 
Since no tabulated values were given in Rosenberg’s paper, values of U and for 
his experiments were taken from an enlarged image of one of his figures projected 
on to a suitably scaled grid. There is the possibility of a slight error in replotting 
by this method. 

The agreement of the experiments with the theory is good. If anything, the 
experiments fall slightly below the theoretical line but this is in agreement with 
our knowledge that, at  the infinite liquid limit, the first approximation is ap- 
proximately 2 yo above a second, which is also shown on the figure. The upper 
limit of 61b appears to be alb = 0.71, slightly lower than the theoretical limit 
given by Dumitrescu’s matching procedure. It is interesting to note that 
Dumitrescu’s experimental shape also gives 6 / b  = 0.71, although this was not 
quoted as one of his main results. At this value Dumitrescu’s theoretical velocity 
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would be Us = 0*49(gb)i while the present theory gives U, = 0*486(gb)*. Stewart’s 
relaxation computations gave a limiting value of Z / b  = 0.71 at a, velocity 
Us = 0.496(gb)*; they also showed that a = over an included angle of 75”. 
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FIGURE 7. Comparison of theory with experiment: +- , asymptote for second approximation; 
-, present theory; + , present experiments; 0, Rosenberg’s experiments; 0, mean of 
Dumitrescu’s experiments; 0, Davies & Taylor’s experiments in nitrobenzene. 

Figure 8 correlates Z/b  with V$/b, the scatter being indicative of a lack of 
geometrical similarity of bubbles of given V)/b. Davies & Taylor’s nitrobenzene 
results are again included. Drawn through the points and apparently correlating 
them well, is a line having the equation 

Z/b  = 0.71 tanh*{4.25( V*/b)2}. (18) 

There is no theoretical basis for this equation, but it does appear to possess the 
appropriate shape together with appropriate asymptotes. At one extreme, as 
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V$/b -+ co, Z / b  -+ 0.71, but the asymptote is approached so rapidly that Zjb = 0.706 
when V*/b = 0.8. The asymptote of (18) as b- tco  is 

Z = 1.465Vg. (19) 

To examine the suitability of this result we may employ the empirical relation 
derived by Davjes & Taylor relating bubble velocity with volume. Augmenting 
their nitrobenzene results with results from a large number of air bubbles in 
water (for which i% was apparently not measured) they deduced a result which 
may be written as 

(20) U z  = 0-792(gVf)*. 
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FIGURE 8. Variation of apparent curvature with bubble volume: + , present experiments; 
0, Davies & Taylor’s experiments in nitrobenzene; -, equation (18). 

On using (19), this result may be recast in terms of Z as 

urn = 0*654(gZ)4. (21) 

This result, rather circuitously obtained, lies between the first and second 
approximations at the infinite liquid limit and is somewhat closer to the second 
than the first. It is also very close to the mean of the combined results of Rosen- 
berg and Davies & Taylor’s nitrobenzene experiments, which is U, = 0*65(gZ)*. 
The asymptotic behaviour of (18) is thus consistent with previous work. 

Having established the theory as a good first approximation, the experimental 
results may be replotted in a form comparable with Uno & Kintner’s. Figure 9 
contains the available experimental evidence and shows U/U$ as a function of 
V4lb.T In addition to the present results, this figure includes results from several 
other investigations. Those for bubbles in water used by Davies & Taylor in 
establishing equation (20) are shown, values for these points being taken from 

t For those more accustomed to the use of the equivalent diameter 0, as a measure of 
bubble size, a subsidiary axis indicates the range of variation of DJ2b. 
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an enlarged figure in the original report from which their paper was derived. 
Unlike the bubbles in nitrobenzene, these bubbles were blown in a cylindrical 
tank 2ft. 6 in. in diameter. Results from Uno & Kintner’s experiments plotted in 
figure 9 relate only to those bubbles which can be considered of spherical-cap 
form, that is having volumes in excess of about 3.5cm3. These bubbles were 
formed in water, diethylene-glycol and a glycerine-water mixture in tubes whose 
diameters ranged from 3-64 to 15-25cm. The values came from their tables 

DePb 
0 0 1  0 2  03 0 4  0 5  0 6  07 

0 1  I i I I I I 
1.2 

1.1 

07 

0.6 

I I I I I I I I I I I I 
0 0.1 0 2  0 3  0 4  0 5  06  0 7  0 8  0 9  1.0 1.1 1.2 

Vi /b  

F I G ~ E  9. Variation of U/lJz  with V#/b: -, semi-empirical line; ---, equation (23); 
+ , present experiments; 0, Davies &, Taylor’s experiments in nitrobenzene; 0, Davies & 
Taylor’s experiments in water; 0, Uno & Kintner’s experiments. 

published separately, and not from the smoothed curves presented in their paper. 
The values of 77% used in plotting all results in this figure were those given by 
(20). In  some cases this does not agree exactly with Uno & Kintner’s estimate, 
but the differences are slight. 

The continuous line labelled ‘semi-empirical ’ on this figure results from com- 
bining the theoretical velocity given by equations (15) and (16) with the 
empirical results contained in equations (18) and (20). The scatter of the points is 
high, particularly at low values of V*/b, but this line, none the less, correlates the 
results quite well. It is a little curious at first sight that it should give 
U/U*, = 1.018 at V&/b = 0, but this is merely a reflection of the fact that U is 
a theoretical first approximation and is therefore slightly high a t  that asymptote, 
while U z  is a purely empirical quantity. 

Also shown in figure 9 is the asymptote a t  the slug limit which comes from 
combining the present theoretical slug velocity 

U, = 0-493(gb)* (22) 



Velocity of a large gas bubble in a liquid 

Us/ U*, = 0*62(b/ Vg)g. 
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with the empirical equation (30) to give 

(23) 

Three regimes of flow may thus be discerned in this figure. When Vi/b < 0.15 the 
effect of the containing cylindrical boundary is negligible; there is a transition 
region in which 0.15 < V*/b < 0-8; finally, when V&/b > 0.8, the bubble behaves 
effectively as if it  were a slug. From figure 8, the limiting value of alb has then 
been sensibly reached. 

1 .o 
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+ 8  
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0.6 

0.5 
0 0. I 0.2 0.3 0.1 0.5 0.6 0 7  0.8 

sijb 

FIGURE 10. Variation of U j U z  with Zlb: -, semi-empirical line; ---,mean line through 
Uno & Kintner’s data in their figure 10. 

There is no agreement on comparing the present results with Uno & Kintner’s 
figure 10 purporting to show U/U*, as a function of Zlb. The comparison is 
effected in figure 10 here. Undoubtedly the difference in form is due to their use 
of a ‘compromise curve’ to obtain C/b  from their measured volumes. We note, for 
example, the prediction of ii/b as high as 0.8, whereas the maximum value 
recorded here and by other writers is 0.71. It is concluded that figure 10 of Uno & 
Kintner’s paper is invalid. 

Further discussion of the application of the present results to gas bubbles in 
fluidized beds, together with some suggested empirical relations, may be found 
in the report previously cited (Collins 1967). 

To summarize, a theoretical first approximation for the velocity of a large gas 
bubble rising along the axis of a liquid-filled circular cylinder provides an adequate 
description of the behaviour of a real bubble. This theory links the previously 
known asymptotes a t  the infinite liquid and slug limits. It may be recast as a 
semi-empirical theory relating velocity with bubble volume, which agrees well 
both with the present experiments and with those of previous writers. 

The author is indebted to the United Kingdom Atomic Energy Authority for 
an apparatus grant, and for permission to publish the experimental part of this 
work. 
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